Identification of promising high yielding blast resistant rice genotype for hilly conditions of Karnataka

GN Hosagoudar* and Sheshaiah

Agricultural and Horticultural Research Station, Ponnampet, Karanataka, India *Corresponding author e-mail: gnhosagudar@rediffmail.com

Received : 11 September 2019

Accepted: 30 December 2019

Published : 31 December 2019

ABSTRACT

Rice (Oryza sativa L.) is one of the most important food crops from which nearly one third of world's population derives its principal source of calories. The experiment was conducted to discover the impending genotypes suitable for hilly situation of Karnataka. The experimental materials were chosen or selected based on significant superiority or on par yield over the local check variety, i.e., Tunga in the AICRIP investigational trials of paddy. The chosen entries were evaluated for the three years in the station trial at the Agricultural and Horticultural Research Station, Ponnampet in randomized complete block design with two replications during 2016, 2017 and 2018 kharif seasons. Third year Multi Location Trial (MLT) was also conducted at AHRS, Ponnampet and ZAHRS, Mudigere. The pooled data across the years in the station trial revealed that the entry IET-24451 recorded the utmost grain yield (6196 kg/ha) among the entries and gave up 36 per cent increased grain yield over the Tunga and 17 per cent increased grain yield over the KPR-1. The pooled data of MLT across the locations revealed that the entry IET-25281 recorded the utmost grain yield of 6076 kg/ha with 11 per cent increased grain yield over the Tunga and 13 per cent increased grain yield over the KPR-1. The combined pooled data of station trial across the years and MLT trial across locations revealed that the entry, IET-24451 of 6135 kg/ha recorded the maximum grain yield followed by IET-25281 (5970 kg/ha) among the entries. The entry IET-24451 recorded 22 per cent increased grain yield over the Tunga and 15 per cent increased grain yield over the KPR-1, whereas the entry IET-25281 recorded 19 per cent increased grain yield over the Tunga and 12 per cent increased grain yield over the KPR-1 and both the entries IET-24451 and IET-25281 recorded the leaf and neck blast resistance reaction in the Uniform Blast Nursery Screening Pattern. Hence, the entry IET-24451 was recommended for on-farm trial due to its blast resistance trait and yield superiority across the years and the locations.

Key words: Blast, genotypes, grain yield, resistant and rice

INTRODUCTION

Rice (*Oryza sativa* L.) is one of the most important food crops from which nearly one third of world's population derives its principal source of calories. It is widely cultivated under diverse agroecosystems ranging from rainfed low land situation to upland irrigated situation. More than 70 % of the population in south East-Asia depends on rice for their energy requirements. Rice is cultivated globally in an area of about 161.40 million hectares with production of about 506.30 million tonnes and productivity of 3.14 tonnes per hectare. India is an important center of rice cultivation covering an area of 44.11 million hectare with an annual production of 105.48 million tonnes and an average productivity of 2.39 tonnes per hectare. In India, rice is grown in almost all the states. In Karnataka, it occupies 13.26 lakh hectares with annual production of 3.54 million tons with average productivity of 2.67 tonnes per hectare (Anon, 2016). Based on the trend of consumption in our country, it is estimated that requirement of rice will be 137.30 million tonnes by 2050 (Anon, 2013).

Due to the green revolution in 1960's, world's rice production increased. On the contrary, production

Rice blast resistant donors

potential of modern cultivars of rice is currently declining, because of several biotic, abiotic stresses (Keneni et al., 2012) and narrow genetic base in modern cultivars of rice (Wouw et al., 2010). In order to fulfill the requirement of rice there is an urgent need to identify potential high yielding and disease resistant rice genotypes over the existing cultivated varieties. Hence, an experiment was conducted to identify the potential genotypes suitable for hilly conditions of Karnataka.

MATERIALS AND METHODS

The experimental materials were selected based on significant superiority or on par yield over the local check variety i.e., Tunga in the All India Coordinated Rice Improvement Project (AICRIP) trials. Every year, 40 rice genotypes comprising of selected entries from AICRIP trials and existing varieties were evaluated at Agricultural and Horticultural Research Station, Ponnampet, Karnataka in randomized complete block design with two replications during kahrif, 2016, 2017 and 2018.

The seeds were sown in nursery bed to raise the seedlings of paddy genotypes and 25 days old seedlings were transplanted with a spacing of 15×15 cm in a plot 6.75 m² sizes for each genotype. All agronomic practices were followed based on the zonal recommendations to raise a good crop. The observations

Hosagoudar and Sheshaiah

on plant height and panicle number per plant were recorded on five randomly selected plants from each plot. Observations on days to 50 per cent flowering and yield were taken on plot basis. The grain yield values recorded from the net plot (kg/plot) were converted into hectare (kg/ha). The genotypes were also evaluated for disease reaction especially leaf and neck blast reaction because AHRS, Ponnampet is considered as one of the hot spot for rice blast disease hence the genotypes were scored by following SES scale of IRRI (1996) in the nursery and field condition for leaf and neck blast incidence, respectively. The rice blast disease reactions were recorded by using 0-9 scale given below

Based on the two years performance in the station trial, Multi-Location Trial (MLT) was conducted in the third year with seven genotypes including two checks at ZAHRS Mudigere and AHRS, Ponnampet. The pooled analyses were performed across the years in the station and across the locations in MLT. The percent increase in grain yield over check varieties were calculated by using the formula

Per cent grain yield increased over check verity

```
=\frac{(\text{Mean grain yield of selected entry - Mean grain yield of check verity})}{\text{Mean grain yield of check verity}} \ge 100
```

Disease scale	Disease symptoms	Host response
0	No lesions observed	Highly resistant
1	Small brown specks of pin-point size or larger brown specks without sporulating center	Highly resistant
2	Small roundish to slightly elongated, necrotic grey spots, about 1-2 mm in diameter, with a distinct brown margin	Resistant
3	Lesion type is the same as in scale 2, but a significant number of lesions are on the upper leaves	Moderately resistant
4	Typical susceptible blast lesions 3 mm or longer, infecting less than 4 per cent of the leaf area	Moderately resistant
5	Typical blast lesions infecting 4-10 per cent of the leaf area	Moderately susceptible
6	Typical blast lesions infection 11-25 per cent of the leaf area	Moderately susceptible
7	Typical blast lesions infection 26-50 per cent of the leaf area	Susceptible
8	Typical blast lesions infection 51-75 per cent of the leaf area and many leaves are dead	Highly susceptible
9	More than 75 per cent leaf area affected	Highly susceptible

Standard scale given by IRRI (1996) for neck blast reaction was done at after maturity stage.

U			
Disease scale	Disease symptoms	Host response	
0	No lesions observed	Highly resistant	
1	Less than 5 per cent infected panicles	Resistant	
3	5-10 per cent infected panicles	Moderately resistant	
5	11-25 per cent infected panicles	Moderately susceptible	
7	26-50 per cent infected panicles	Susceptible	
9	More than 50 per cent infected panicles	Highly susceptible	

RESULTS AND DISCUSSION

The pooled data of top five performing rice genotypes across the years are presented in Table 1. The average days to fifty percent flowering, plant height and productive tillers per plant of rice genotypes were recorded to be 111 days, 80.14 cm and 9.21 numbers respectively. The pooled data across the years in the station trial revealed that the entry IET-24451 recorded the highest grain yield (6196 kg/ha) among the entries and showed 36 per cent increased grain yield over the Tunga and 17 per cent increased grain yield over the KPR-1. Similarly, Kirubakaran Soundararaj et al. (2015) found a superiority of rice genotype, TPS 5 (TP 08010 culture) and it recorded a mean grain yield of 6377 Kg/ha over four years of station trials conducted during 2007 to 2011 at Agricultural Research Station, Thirupathisaram with 14.70 per cent yield improvement over ASD 16. Besides yield advantage of IET-12445, both leaf and neck blast resistance also recorded and it is on par with the KPR-1 (check entry), where as other ckeck entry Tunga recorded moderately resistant reaction for both the types of blast.

The pooled data of Multi Location Trials across the locations are presented in Table 2. The average days to fifty percent flowering, plant height and productive tillers per plant recorded rice genotypes were of 111 days, 83.57 cm and 10.71 numbers respectively. The pooled data of Multi Location Trials across the locations revealed that the entry IET-25281 recorded the highest grain yield of 6076 kg/ha among the entries and showed 11 per cent increased grain yield over the Tunga and 13 per cent increased grain vield over the KPR-1. Similarly Dushyanthakumar and Shadakshari (2011) found most promising entry (KHP-10) in multi Location Trials conducted during 2002 to 2006 at ZARS-Mudigere, ARS-Sirsi, Ponnampet and Madikeri. It recorded 25 % and 23 % increased grain yield over recommended checks KHP-2 and IET-7191 respectively. Besides yield advantage of IET-25281, both leaf and neck blast resistance also recorded and it is on par with the KPR-1 (check entry), where as other ckeck entry Tunga recorded moderately resistant reaction for both the types of blast.

The combined pooled data of station trials and MLT trials are presented in Table 3. The average days to fifty percent flowering, plant height and productive

Oryza Vol. 56 No. 4, 2019 (375-379)

,	Plant n	Plant height (cm)	(III)		Number (of tille	er per plar	nt Grair	Number of tiller per plant Grain yield (Kg/ha)	ha)		%	%	Leaf	Neck
)					•					yield	yield	blast	blast
												incr-	incr-	scores	scores
												ease	ease		
												over			
												Tunga	KP		
20	9	2018 Mean 2016 2017	2018	Mean	2016 2017		2018 Mean	2016	2017	2018	Mean		K-1		
84			84	87	8	8	8	6881		-	6196	36	17	7	1
Ľ		84	76	79	10 9	1() 10	5824	5231	6537	5864	29	11	2	1
94			86		8 6	8	L	5467		-	5510	21	4	4	ŝ
87			75		9 10		6 (6022			5481	20	4	ю	e S
74			70			Г	6	5914			5350	17	1	7	ŝ
85			93			8	7	4308			4556	0	-14	3	ŝ
84			85			8	6	6385			5275	16	0	7	1
79.31		\sim	80.03	80.14	10.54 8.74		8.34 9.21	4986			4580				
4.8		8.40	8.09	8.30	1.66 2.48		2.50 2.21	1069.98		1077.65	5 1029.20				
5.2		5.11	5.00	5.11	7.76 14.	14.01 14	14.85 12.21	10.57	7 12.60	10.51	11.23				

Table 1. Pooled data of top performing genotypes in station trials conducted at AHRS, Ponnampet, Karnataka during 2016, 2017 and 2018.

D 377 **D**

Table 2. Pooled data of top performing genotypes	oled dats	a of top	perform	ing gen	otypesi	in MLT-	2018-19	condu	cted at N	in MLT-2018-19 conducted at Mudigere and Ponnampet, Karnataka	nd Ponna	umpet, Ká	ırnataka.			
Entries	Days to	50% fl	Days to 50% flowering Plant height (Plant h	leight (c	(cm)	Numbe	Number of tiller per	er per	Grain yield (Kg/ha)	d (Kg/ha)	_	% yield	% yield	Leaf	Neck
							plant						increase	increase	blast	blast
													over Tunga	over KPR-1	scores	scores
	MDG	PNP	PNP Mean	MDG PNP	PNP	Mean	MDG	PNP	Mean	MDG	PNP	Mean)			
IET-25281	116	108	112	85	76	80	13	11	12	5584	6568	6076	11	13	2	1
IET-24451	111	108	110	86	84	85	13	6	11	5390	6756	6073	11	12	2	1
IET-24395	111	105	108	83	85	84	13	7	10	6007	6032	6020	10	11	4	3
IR-10A155	118	122	120	86	75	80	14	10	12	5540	5551	5545	1	3	2	1
IET-24491	103	102	103	74	70	72	13	7	10	4937	5628	5283	-4	-2	ю	ŝ
Tunga	125	123	124	106	93	66	13	7	10	5654	5309	5481	0	2	n	n
KPR-1	101	105	103	86	85	85	13	7	10	5467	5333	5400	-1	0	2	1
Exptl. mean	112.14	110.43	3 111.43		81.14	83.57	13.14	8.29	10.71	5511	5882	5697				
LSD @ 5%	1.13	1.28	0.93	8.06	7.47	6.41	0.75	1.42	0.91	1154.21	907.89	769.66				
C.V.	0.57	0.65		5.23	5.18	4.29	3.22	9.60	4.78	11.77	8.68	7.59				

Karnataka.	
<u>.</u>	
Ponnampet	
q	
re an	
digeı	
J u	
Σ	
at	
÷	
acte	
ondı	
õ	
E	
ILI	
- 1	
E	
E	
E	
E	
E	
E	
E	
E	
E	
E	
ed data of station trials and ML	
ooled data of station trials and ML	
ed data of station trials and ML	
ooled data of station trials and ML	
ooled data of station trials and ML	
ooled data of station trials and ML	
ombined pooled data of station trials and ML	
ooled data of station trials and ML	
. Combined pooled data of station trials and ML	
. Combined pooled data of station trials and ML	
ombined pooled data of station trials and ML	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Table 3. Combined pooled data of station trials and MLT conducted at Mudigere and Ponnampet, Karnataka	mbined]	pooled (data of s	tation tria	als and l	MLT con	ducted a	ut Mudig	cere and P	onnampe	t, Karnata	ıka.				
	Entries	Days to	50% flc	wering	Plant he	ight (cm)	_	Number	r of tiller	per plant	Grain Yie	ld (Kg/ha)		% yield		Leaf	Neck
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Station	MLT	Pooled	Station	MLT	Pooled	Station	MLT	Pooled	Station	MLT	Pooled	increase		blast	blast
mean mean mean mean Tunga 451 110 110 110 87 85 86 8 11 9 6196 6073 6135 22 281 114 112 113 79 80 10 12 11 5864 6076 5970 19 395 112 108 110 89 84 87 7 10 9 5516 6076 5970 19 49 107 103 105 73 72 73 9 10 9 5545 5513 10 40 107 103 105 73 72 73 9 10 9 5545 5513 10 11 106 103 105 73 72 73 9 10 9 5545 5513 10 106 103 105 87 8 9 10		trial	mean	mean	trial	mean	mean	trial	mean	mean	trial	mean	mean	over		scores	scores
451 110 110 110 110 110 87 85 86 8 11 9 6196 6073 6135 22 1 281 114 112 113 79 80 80 10 12 11 5864 6076 5970 19 19 395 112 108 110 89 84 87 7 10 9 5510 6020 5765 15 8 49 107 103 105 73 72 73 9 10 9 5545 5513 10 3317 6 0 3 10 3 10 3317 6 0 3 10 9 5545 5513 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 10 9 5755 5400 5338 6		mean			mean			mean			mean			Tunga	KPR-1		
281 114 112 113 79 80 80 10 12 11 5864 6076 395 112 108 110 89 84 87 7 10 9 5510 6020 455 116 120 118 80 80 80 9 12 11 5481 5545 49 107 103 105 73 72 73 9 10 9 5350 5283 124 124 124 91 99 95 7 10 9 4556 5481 106 103 105 87 85 86 9 10 9 5275 5400 nean 1111 1143 1127 8014 83.55 9.21 10.71 9.96 4580 5697 5% 2.29 0.93 1.61 8.30 6.41 7.355 2.21 0.91 1.56 10.9220 769.66 5% 2.29 0.93 1.61 8.30	IET-24451	110	110	110	87	85	86	8	11	6	6196	6073	6135	22	15	2	1
395 112 108 110 89 84 87 7 10 9 5510 6020 455 116 120 118 80 80 80 9 12 11 5481 5545 49 107 103 105 73 72 73 9 10 9 5350 5283 124 124 124 91 99 95 7 10 9 4556 5481 106 103 105 87 86 9 10 9 5275 5400 nean 111.11 111.27 80.14 83.57 81.855 9.21 10.71 9.96 4580 5697 5% 2.29 0.93 1.61 8.30 6.41 7.355 2.21 0.91 1.56 1029.20 769.66 1.16 0.47 0.82 5.11 4.29 4.7 12.21 4.78 8.495 11.23 7.59	IET-25281	114	112	113	<i>4</i>	80	80	10	12	11	5864	6076	5970	19	12	2	1
I55 116 120 118 80 80 80 9 12 11 5481 5545 49 107 103 105 73 72 73 9 10 9 5350 5283 124 124 124 124 91 99 95 7 10 9 4556 5481 106 103 105 87 85 86 9 10 9 5575 5400 nean 111.11 111.43 111.27 80.14 83.57 81.855 9.21 10.71 9.96 4580 5697 5% 2.29 0.93 1.61 8.30 6.41 7.355 2.21 0.91 1.56 1029.20 769.66 116 0.47 0.82 5.11 4.29 4.7 12.21 4.78 8.495 11.23 7.59	IET-24395	112	108	110	89	84	87	7	10	9	5510	6020	5765	15	8	4	3
49 107 103 105 73 72 73 9 10 9 5350 5283 124 124 124 124 91 99 95 7 10 9 4556 5481 106 103 105 87 85 86 9 10 9 5275 5400 nean 111.11 111.43 111.27 80.14 83.57 81.855 9.21 10.71 9.96 4580 5697 5% 2.29 0.93 1.61 8.30 6.41 7.355 2.21 0.91 1.56 1029.20 769.66 116 0.47 0.82 5.11 4.29 4.7 12.21 4.78 8.495 11.23 7.59	IR-10A155	116	120	118	80	80	80	6	12	11	5481	5545	5513	10	3	3	ю
124 12 105 105 107 9 4556 5481 nean 111.11 111.43 111.27 80.14 83.57 81.855 9.21 10.71 9.96 4580 5697 5% 2.29 0.93 1.61 8.30 6.41 7.355 2.21 0.91 1.56 1029.20 769.66 116 0.47 0.82 5.11 4.29 4.7 12.21 4.78 8.495 11.23 7.59	IET-2449	107	103	105	73	72	73	6	10	6	5350	5283	5317	9	0	2	ю
106 103 105 87 85 86 9 10 9 5275 5400 nean 111.11 111.43 111.27 80.14 83.57 81.855 9.21 10.71 9.96 4580 5697 5% 2.29 0.93 1.61 8.30 6.41 7.355 2.21 0.91 1.56 1029.20 769.66 1.16 0.47 0.82 5.11 4.29 4.7 12.21 4.78 8.495 11.23 7.59	Tunga	124	124	124	91	66	95	7	10	6	4556	5481	5019	0	-9	3	с,
111.11 111.27 80.14 83.57 81.855 9.21 10.71 9.96 4580 5697 2.29 0.93 1.61 8.30 6.41 7.355 2.21 0.91 1.56 1029.20 769.66 1.16 0.47 0.82 5.11 4.29 4.7 12.21 4.78 8.495 11.23 7.59	KPR-1	106	103	105	87	85	86	6	10	6	5275	5400	5338	9	0	2	1
@ 5% 2.29 0.93 1.61 8.30 6.41 7.355 2.21 0.91 1.56 1029.20 769.66 1.16 0.47 0.82 5.11 4.29 4.7 12.21 4.78 8.495 11.23 7.59	Exptl. mean	111.11	111.43		80.14	83.57	81.855	9.21	10.71	9.96	4580	5697	5138				
1.16 0.47 0.82 5.11 4.29 4.7 12.21 4.78 8.495 11.23 7.59 5	C.D.@ 5%	2.29	0.93	1.61	8.30	6.41	7.355	2.21	0.91	1.56	1029.20	769.66	899.43				
	C.V.	1.16	0.47	0.82	5.11	4.29	4.7	12.21	4.78	8.495	11.23	7.59	9.41				

Rice blast resistant donors

Hosagoudar and Sheshaiah

tillers per plant recorded rice genotypes were of 111 days, 81.86 cm and 9.96 numbers respectively. The combined pooled data of station trials and MLT trials across the years and across locations revealed that the entry, IET-24451 with 6135 kg/ha recorded the highest grain yield followed by IET-25281 with 5970 kg/ha among the entries. The entry IET-24451 recorded 22 per cent increased grain yield over the Tunga and 15 per cent increased grain yield over the KPR-1, whereas the entry IET-25281 recorded 19 per cent increased grain yield over the Tunga and 12 per cent increased grain yield over the KPR-1. Thirumeni et al. (2015) considering the overall performance of KR 99001 in different trials of station trials, Multilocation trials, Adaptive Research Trials (ART) and On Farm Trials (OFT), reported that the proposed culture recorded an average grain yield of 5.5 t/ha with an increase of 4.58 per cent over CR 1009 (5.2 t/ha) and 5.97 per cent over ADT 44 (5.2 t/ha) and KR 99001 was recommended and approved for release after confirming its performance in agronomic experiment.

These two entries IET-24451 and IET-25281 were found promising as evidenced by increased grain yield which is one of the most important parameter in determining the potentiality of a variety. The maximum grain yield is associated with higher dry matter, heavier panicle and number of total grains per panicle reported by Rao et al. (2000). Pradhan et al. (2014) also revealed that increased grain yield was due to positive correlation with panicles per square meter, number of grains per panicle and panicle length and Jamir and Gohain (2017) also agreed with Pradhan et al. (2014). The high yielding entries IET-24451 and IET-25281 also recorded resistance to leaf and neck blast reaction both in station trial and Multi Location Trials. The entry IET-24451 was already promoted to the AVT-2-RSL in AICRIP during 2015 which recorded 11 % increased yield over the best check variety in the Karnataka as well as in southern zone (Zone VII) of India (Progress Report, 2015)

The entry IET-24451 is medium duration, high yielding, blast resistant genotype with long bold seeds. Considering the overall performance of IET-24451 in different trials of AICRIP, station and Multilocation trial, the entry IET-24451 is suggested for the conduct of on- farm trial.

Oryza Vol. 56 No. 4, 2019 (375-379)

REFERENCES

- Anonymous (2013). Vision 2050, Central Rice Research Institute Indian Council of Agricultural Research, Cuttack (Odisha) pp. 8-9
- Anonymous (2016). Rice-Statistics and facts. http:// www.statista.com/topics/1443/rice/
- Dushyanthakumar BM and Shadakshari YG (2011) KHP-10-A new red rice variety for Mid Lands in Rainfed ecosystem of Hill zone of Karnataka. Electronic Journal of Plant Breeding 2(4): 480-483
- IRRI (1996). Standard evaluation system for rice. 4th Edition, IRRI, Philippines
- Jamir T and Gohain T (2017) Study on Growth and Yield Performance of High Yielding Rice (*Oryza sativa* L.) Varieties under rainfed lowland condition of Nagaland. International Journal of Bio-resource and Stress Management 8(5): 622-627
- Keneni G, Bekele E, Imtiaz M and Dagne K (2012). Genetic vulnerability of modern crop cultivars: causes, mechanism and remedies. Int. J. Pl. Res. 2: 69-79
- Soundararaj K, APM, Arumugam Pillai M, Gailce Leo Justin C, Senthil Kumar N, Eraivan Arutkani Aiyanathan K, Saravanan S and Preetha G (2015). Rice TPS 5, non-lodging short bold grain variety. Electronic Journal of Plant Breeding 6(4): 1027-1033
- Pradan A, Thakur A and Sonboir HL (2014) Response of rice (Oryza sativa) varieties to different levels of nitrogen under rainfed aerobic ecosystem. Indian Journal of Agronomy 59(1): 76-79
- Progress Report (2015). Vol.1, Varietal Improvement, All India Coordinated Rice Improvement Project, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad - 500 030, T.S, India
- Rao BB, Modh CH Ikramullah and Murthy R (2000). Influence of time of planting on grain yield of scented rice. Crop Research 20(2): 179-181
- Thirumeni S, Paramasivam K, Karthikeyan R, Rettinasababady C and Kandibane M (2015). KKL(R)-1: A promising long duration rice variety. Electronic Journal of Plant Breeding 6(1): 8-11
- Wouw VDM, Hintum VT, Kik C, Van Treuren R and Visser B (2010). Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theor. Appl. Genet. 120(6): 1241-52